Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination.
نویسندگان
چکیده
Characterizing the molecular network underlying temperature-dependent (TSD) and genotypic (GSD) sex determination, including patterns across closely related taxa, is crucial to elucidate the still enigmatic evolution of sex determining mechanisms in vertebrates. Here we examined the expression of an important gene for sexual differentiation common to both systems, Sf1, at male- and female-producing temperatures, in TSD (Chrysemys picta) and GSD turtles (Apalone mutica). We tested the hypotheses that Sf1 expression responds to temperature consistently across TSD turtles but is unaffected in GSD turtles, and that this differential expression starts no earlier than the onset of the thermosensitive period (TSP). As expected, Sf1 expression was thermally insensitive in A. mutica (GSD). Although Sf1 exhibited a differential expression by temperature in C. picta, the expression pattern differed from other TSD turtles (Trachemys scripta), perhaps reflecting divergence of the gene regulatory networks underlying sex determination over evolutionary time. Most notably, Sf1 was differentially expressed in C. picta (significantly higher at the male-producing temperature) before the onset of the TSP, implying that in TSD taxa significant thermal effects may occur early in development. This result may reconcile field observations where temperatures experienced prior to the TSP have an effect on sex ratios, thus challenging traditional TSP models. Importantly, the molecular factors that render TSD mechanisms thermosensitive remain unknown, and potential candidates are genes that express differentially before the onset of the TSP (genes shaping or opening the TSP-window rather those acting once the TSP window has opened). Therefore, our findings make Sf1 one such potential candidate.
منابع مشابه
Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination.
The evolution of sex determination has long fascinated biologists, as it has paramount consequences for the evolution of a multitude of traits, from sex allocation to speciation and extinction. Explaining the diversity of sex-determining systems found in vertebrates (genotypic or GSD and temperature-dependent or TSD) requires a comprehensive and integrative examination from both a functional an...
متن کاملRelic thermosensitive gene expression in a turtle with genotypic sex determination.
The evolution of sex determination remains one of the most fascinating enigmas in biology. Transitions between genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) have occurred multiple times during vertebrate evolution, however, the molecular basis and consequences of these transitions in closely related taxa remain unresolved. Here I address a critical question...
متن کاملMultivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination.
Sexual development has long been the target of study and despite great advances in our understanding of the composition and regulation of the gene network underlying gonadogenesis, our knowledge remains incomplete. Of particular interest is the relative role that the environment and the genome play in directing gonadal formation, especially the effect of environmental temperature in directing t...
متن کاملTranscriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development
Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the...
متن کاملMolecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta.
Sex determination is triggered by factors ranging from genotypic (GSD) to environmental (ESD), or both GSD + EE (GSD susceptible to environmental effects), and its evolution remains enigmatic. The presence/absence of sex chromosomes purportedly separates species at the ESD end of the continuum from the rest (GSD and GSD + EE) because the evolutionary dynamics of sex chromosomes and autosomes di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution & development
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2006